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Emphysema remains an enigma. Visual classification of emphysema on computed 

tomography (CT) imaging has remained unchanged for over 30 years and essentially 

constitutes the identification of three disease patterns: centrilobular [1,2], paraseptal [3] or 

panlobular [4] emphysema. This classification originates from anatomical descriptions dating 

from the 1950s specifying the location of airspace destruction within the acinus or lobule and 

the proximity of emphysema to the visceral pleura. The extrapolation of histopathological 

scale features of damage [5,6] to the clinical CT scale was a key milestone in the early years of 

lung CT interpretation. 

 

Yet when considering emphysema and its role in disease pathogenesis and progression one is 

led to wonder what has been lost by only considering emphysema in terms of three 

anatomical patterns. Centrilobular emphysema can itself comprise a range of imaging 

phenotypes, from frank destruction of an entire secondary pulmonary lobule to subtle 

reductions in peribronchiolar lung density that may be easily missed at first glance. Whilst 

visual evaluation has focussed on measuring emphysema extent, could we be inadequately 

capturing emphysema severity? 

 



The advent of computer analysis of lung CT imaging dramatically improved the ability with 

which emphysema extent could be quantified using density masks [7] or parametric response 

maps [8]. Computer tools typically evaluate the entirety of the lungs in discretised small voxel 

volume units. Whilst valuable information pertaining to the co-ordinates and morphology of 

emphysema, and its spatial relationship to the surrounding lung parenchyma is embedded 

within CT data, this is mostly discarded in the outputs of computer models which quantify 

emphysema with a single number. 

 

To address existing limitations in emphysema characterisation, in this edition of Thorax, 

Angelini et al [9] applied a data-driven approach to reclassify pulmonary emphysema subtypes 

in subjects with COPD. Emphysema detection utilised a -950HU density threshold applied 

across small lung volumes (25x25x25mm) and importantly considered textural and spatial 

features within emphysematous regions. Unsupervised clustering resulted in the identification 

of six emphysema subtypes which were then phenotypically described by chest radiologists 

after considering pertinent physiological and demographic information. 

 

In three of the six emphysema subgroups: the combined bronchitis-apical, diffuse and 

vanishing lung groups, the distinctive morphological and anatomical localisation of 

emphysema conforms well to recollections of COPD CTs reported in routine practice. Two of 

the other COPD emphysema subtypes were associated with fibrosis (combined fibrosis and 

emphysema [CPFE]) and are less intuitive. These were termed “Obstructive CPFE” and 

“Restrictive CPFE” and describe the now increasingly recognised overlap between COPD 

and fibrosing lung disease. Imaging of these patients is crucial to identify co-existent fibrosis 

which might be missed if there was reliance on lung function testing alone for diagnosis of 

COPD and related conditions.  



 

A clear advantage of the approach employed by Angelini et al [9] was a more nuanced 

consideration of emphysema location beyond centrilobular and paraseptal distributions when 

classifying emphysema subtypes. The phenotypic description of the emphysema subtypes 

also considered co-existent bronchial wall thickening and vascular abnormalities, thereby 

providing a broader context to COPD-related parenchymal damage. Finally, distinct 

demographic, clinical, functional, genomic, and prognostic associations were identified for 

some of the various emphysema subtypes. 

 

Reimagining the characterisation of emphysema is a timely endeavour and the study by 

Angelini et al [9] provides an early template for data-driven image analysis in COPD 

populations. However, COPD-related damage includes local extents and severities of 

emphysema, small airways disease, large airways disease, mucus plugging, interstitial 

fibrosis and vascular and cardiac damage. Future studies should aspire to quantify the 

spectrum of COPD imaging abnormalities, not just emphysema, and cluster these using 

unsupervised machine learning techniques [10] to identify important disease subgroups who 

may show differing patterns of disease progression. As multimodal data becomes 

increasingly available, disease clusters should also be informed by integration of genetic, 

environmental, comorbid and host factors which influence exacerbation risk, functional 

decline and mortality.  

 

Whilst current research studies focus on analysis and validation within COPD databases, lung 

cancer screening populations might be the ideal cohort in which to study COPD progression 

and validate quantitative tools. Lung cancer screening programs benefit from a relative 

abundance of subjects with pre-symptomatic COPD and screening routinely captures 



longitudinal imaging, allowing the delineation of early disease evolution and identification of 

progressive phenotypes. By 2028 it is estimated that almost 1 million subjects in the UK will 

be screened with CT annually in the national roll out of lung cancer screening [11]. Among the 

heavy-smoker population invited for lung cancer screening, cohort studies suggest 20-30% 

will have undiagnosed COPD [12,13] and similar proportions will have no COPD on 

spirometry.  

 

An era can be envisioned where detailed quantitative reports could help radiologists describe 

annualised trajectories of various patterns of respiratory and cardiac damage beyond that 

expected from normal ageing in COPD subgroups. These outputs could be fed into multi-

dimensional risk scores which integrate clinical, environmental and genomic data to 

personalise risk-prediction for progressive disease across disease endotypes.  This would 

have the additional advantage of aiding recruitment of subjects to early disease therapeutic 

trials for which imaging could provide composite trial endpoints. 

 

Allied to more comprehensive CT quantitation of patterns of damage in COPD, new imaging 

modalities are also refining our understanding of disease pathophysiology. For example, 

vascular changes in the lung have been underappreciated in pre-symptomatic and 

symptomatic COPD. Yet modern non-destructive microstructural imaging of entire ex-vivo 

lungs now capable with micro-CT [14,15] and hierarchical-phase contrast tomography [16] can 

delineate previously unknown pulmonary-systemic anastomoses16. These techniques are 

likely to herald a second wave of radiological-pathological correlations as three-dimensional 

histopathology, achievable with micro-scale imaging of entire lungs, is computationally 

mapped to and validates patterns of lung damage previously only inferred on clinical CT.  

 



The coming years are likely to result in an expansion of complex machine learning models 

capable of subgrouping COPD and lung cancer screening patients across a broader range of 

better defined and quantified anatomical structures. This process may help blur existing 

distinctions between patients currently diagnosed with COPD, fibrosis and bronchiectasis and 

integrate multi-organ damage, and multi-modal data into routine patient evaluation. In this 

way, one can hope that we transition from an era of disease management to an era of 

personalised multi-faceted patient management. 
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